Dinitrogen Fixation Is Restricted to the Terminal Heterocysts in the Invasive Cyanobacterium Cylindrospermopsis raciborskii CS-505
نویسندگان
چکیده
The toxin producing nitrogen-fixing heterocystous freshwater cyanobacterium Cylindrospermopsis raciborskii recently radiated from its endemic tropical environment into sub-tropical and temperate regions, a radiation likely to be favored by its ability to fix dinitrogen (diazotrophy). Although most heterocystous cyanobacteria differentiate regularly spaced intercalary heterocysts along their trichomes when combined nitrogen sources are depleted, C. raciborskii differentiates only two terminal heterocysts (one at each trichome end) that can reach >100 vegetative cells each. Here we investigated whether these terminal heterocysts are the exclusive sites for dinitrogen fixation in C. raciborskii. The highest nitrogenase activity and NifH biosynthesis (western-blot) were restricted to the light phase of a 12/12 light/dark cycle. Separation of heterocysts and vegetative cells (sonication and two-phase aqueous polymer partitioning) demonstrated that the terminal heterocysts are the sole sites for nifH expression (RT-PCR) and NifH biosynthesis. The latter finding was verified by the exclusive localization of nitrogenase in the terminal heterocysts of intact trichomes (immunogold-transmission electron microscopy and in situ immunofluorescence-light microscopy). These results suggest that the terminal heterocysts provide the combined nitrogen required by the often long trichomes (>100 vegetative cells). Our data also suggests that the terminal-heterocyst phenotype in C. raciborskii may be explained by the lack of a patL ortholog. These data help identify mechanisms by which C. raciborskii and other terminal heterocyst-forming cyanobacteria successfully inhabit environments depleted in combined nitrogen.
منابع مشابه
Growth Characteristics of an Estuarine Heterocystous Cyanobacterium
A new estuarine filamentous heterocystous cyanobacterium was isolated from intertidal sediment of the Lagoa dos Patos estuary (Brazil). The isolate may represent a new genus related to Cylindrospermopsis. While the latter is planktonic, contains gas vesicles, and is toxic, the newly isolated strain is benthic and does not contain gas vesicles. It is not known whether the new strain is toxic. It...
متن کاملCylindrospermopsis raciborskii dominates under very low and high nitrogen-to-phosphorus ratios.
In freshwater ecosystems, a variety of factors mediate phytoplankton community structure, including herbivore community structure, light availability, temperature, mixing, and absolute and relative nutrient concentrations (total nitrogen (TN), total phosphorus (TP)). Ecological stoichiometry examines how the nutrient content of organisms and their environment may mediate population-, community-...
متن کاملThe Smallest Known Genomes of Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and the Evolutionary Implications
Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2)) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filam...
متن کاملCylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin f...
متن کاملDetermining the Invasion Potential for the Harmful Blue- Green Alga (cyanobacterium) Cylindrospermopsis Raciborskii at the Currituck Banks Nerrs Site, Currituck Sound, North Carolina
Cylindrospermopsis raciborskii is an invasive, toxin-producing, filamentous-heterocystous, N 2-fixing cyanobacterium that has recently expanded its range to temperate waterways. Because it is tolerant of a range of environmental conditions, brackish systems like Currituck Sound in northeastern NC, may be susceptible to invasion. Two key research questions were addressed: 1) Is C. raciborskii cu...
متن کامل